Stochastic effects in a seasonally forced epidemic model.
نویسندگان
چکیده
The interplay of seasonality, the system's nonlinearities and intrinsic stochasticity, is studied for a seasonally forced susceptible-exposed-infective-recovered stochastic model. The model is explored in the parameter region that corresponds to childhood infectious diseases such as measles. The power spectrum of the stochastic fluctuations around the attractors of the deterministic system that describes the model in the thermodynamic limit is computed analytically and validated by stochastic simulations for large system sizes. Size effects are studied through additional simulations. Other effects such as switching between coexisting attractors induced by stochasticity often mentioned in the literature as playing an important role in the dynamics of childhood infectious diseases are also investigated. The main conclusion is that stochastic amplification, rather than these effects, is the key ingredient to understand the observed incidence patterns.
منابع مشابه
ENTROPY FOR DTMC SIS EPIDEMIC MODEL
In this paper at rst, a history of mathematical models is given.Next, some basic information about random variables, stochastic processesand Markov chains is introduced. As follows, the entropy for a discrete timeMarkov process is mentioned. After that, the entropy for SIS stochastic modelsis computed, and it is proved that an epidemic will be disappeared after a longtime.
متن کاملMultiple stable recurrent outbreaks and predictability in seasonally forced nonlinear epidemic models.
A seasonally forced nonlinear SEIR epidemic model is used to simulate small and large amplitude periodic outbreaks. The model is shown to exhibit bistable behavior for a fixed set of parameters. Basins of attraction for each recurrent outbreak are computed, and it is shown that the basins of two coexisting stable outbreaks are intertwined in a complicated manner. The effect of such a basin stru...
متن کاملPredicting unobserved exposures from seasonal epidemic data.
We consider a stochastic Susceptible-Exposed-Infected-Recovered (SEIR) epidemiological model with a contact rate that fluctuates seasonally. Through the use of a nonlinear, stochastic projection, we are able to analytically determine the lower dimensional manifold on which the deterministic and stochastic dynamics correctly interact. Our method produces a low dimensional stochastic model that c...
متن کاملPredicting the Next Maxima Incidents of the Seasonally Forced SEIR Epidemic Model
This paper aims at predicting the next maxima values of the state variables of the seasonal SEIR epidemic model and their in-between time intervals. Lorenz’s method of analogues is applied on the attractor formed by the maxima of the corresponding state variables. It is found that both quantities are characterized by a high degree of predictability in the case of the chaotic regime of the param...
متن کاملSpatial heterogeneity in epidemic models.
Spatial heterogeneity is believed to play an important role in the persistence and dynamics of epidemics of childhood diseases because asynchrony between populations within different regions allows global persistence, even if the disease dies out locally. A simple multi-patch (metapopulation) model for spatial heterogeneity in epidemics is analysed and we examine conditions under which patches ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 82 4 Pt 1 شماره
صفحات -
تاریخ انتشار 2010